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I.  INTRODUCTION 

Although ballistic pressure transducers (gages) are used to measure 
dynamic events which occur in milliseconds, the determination of their 
response characteristics is routinely limited to static calibration against 
a deadweight pressure standard.  The strength of this method is that the 
deadweight device is a primary standard.  Its weakness lies in the 
assumption that the static and dynamic responses of the gage in question are 
equivalent.  Differences in gage response to static and dynamic events, 
however, can lead to serious measurement errors.  There has been general 
agreement in the measurement community that dynamic techniques are needed to 
supplement current static calibration methods.  Several techniques have been 
developed to address this problem. 

1. BALLISTIC PULSE METHOD 

In one version of this technique, the gage is mounted at the end of a 
tube in contact with a hydraulic fluid confined by a movable piston.  The 
tube guides a projectile which impacts the piston to create a pressure pulse 
in the fluid. Different pressures may be achieved by varying the 
compressibility of the fluid, the mass of the piston, and the mass and 
velocity of the projectile.  The pulses rise within milliseconds and mimic 
the characteristic rising and falling of a ballistic pressure pulse.  One 
such device, capable of operating to a pressure of 100,000 pounds per square 
inch, is operational at the Combat Systems Testing Activity (CSTÄ), Aberdeen 
Proving Ground, Maryland.3 

This method is quite useful for dynamic comparison of several different 
pressure gages; however, variations in projectile velocity, frictional 
effects on the moving piston, and other energy losses make it difficult to 
accurately compute the actual delivered pressures.  Because a projectile is 
fired during the calibration process, this method requires more extensive 
safety provisions than are readily available in most laboratories. 

2. SHOCK TUBE METHOD 

Two general approaches of shock tube calibration are followed.  In the 
first, the test gage is mounted in the end wall of a tube and subjected to a 
reflecting shock wave. The gage output is monitored as the shock front 
arrives at and reflects from the end wall.  In the second approach, the gage 
is mounted in the side wall of the tube and its output is monitored as the 
shock front passes.  Both methods generate rapidly rising pressure pulses 
that are readily calculated by thermodynamic principles using velocity 
measurements and gas properties. 

Shock tube methods are useful in establishing the dynamic response 
characteristics of pressure gages.  However, calibration is generally 
limited to pressures below 1000 pounds per square inch, whereas ballistic 
applications require far higher pressures. 

3. NEGATIVE-GOING PRESSURE STEP METHOD 

In this technique, the gage is exposed to a given pressure under static 
conditions using a hydraulic fluid.  The pressure on the gage is then 



relieved using a fast acting dump valve, bringing the system to atmospheric 
pressure.  The gage output obtained during the depressurization is assumed 
to be the inverse of the corresponding positive pressure step. 

This method's strengths include its relative simplicity'and suitability 
for use in calibration facilities.  The response of the negative step 
calibrator can be very quick, 100 microseconds or less.  However, the major 
assumption, that the positive response of the gage is equal and opposite to 
the negative response of the gage, is not completely accurate; pressure 
preloading of the gage-to-mount interface and hysteresis can cause 
significant differences between the pressurization and depressurization 
pulses• 

4.  POSITIVE-GOING PRESSURE STEP METHOD 

In this technique, the gage, initially at atmospheric pressure, is 
subjected to a pressure increase by the opening of a fast-acting valve. 
Because the final pressure value is held, the method is suitable for 
obtaining calibration response data.  Although this technique holds a great 
deal of promise, the engineering details of creating a working device can be 
formidable.  Johnson and Cross of the National Bureau of Standards had 
designed a 50,000 pounds per square inch step calibrator in the 1950's. 
Smith and Dykstra described low pressure versions of this device.  These 
calibrators were successfully used to generate positive pressure steps up to 
5000 pounds per square inch in less than one millisecond. 

Building on these ideas, we have developed a device capable of 
generating precisely known positive pressure steps up to 150,000 pounds per 
square inch in less than one millisecond.  The step calibrator may be safely 
operated in a laboratory environment and can compare the response of several 
transducers to a common pressure step.  Additionally, it is economical to., 
use as a routine laboratory tool for gage calibration and screening. 

The discussion that follows describes the pressure step calibrator and 
presents several examples of its operation. 

II.  DISCUSSION 

1.  DESIGN CONCEPT 

Figure 1 illustrates the basic configuration of the device, details are 
given in Figure 2. A large pressure reservoir is connected to a much 
smaller test chamber by a fast acting ball valve.  The test chamber is 
equipped with several gage ports and a vacuum port which aids in filling the 
reservoir and setting the baseline chamber pressure.  The large ratio of 
reservoir to test chamber free volume reduces overall system pressure drop , 
while generating the pressure step. Reservoir pressure is provided by a 
conventional hydraulic high pressure panel and monitored by a high quality 
static reference gage.  The maximum operating design pressure is 150,000 
pounds per square inch and the specified action time (10%•- 90% of peak 
pressure) is under one millisecond. 
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Outputs of both the static reference gage and the ballistic test gages 
are monitored during the course of the test.  The final steady state output 
of the reference gage is taken as the true value of the pressure step 
maximum.  The short-" and long-term monitoring of the test gage outputs 
establish the relationship between dynamic and steady state response 
behavior. 

^ \ STATIC STATIC 
REFERENCE 
GAGE 

\ 
\ 

PRESSURE 
RESERVOIR 

BALLISTIC 
PRESSURE 
GAGE PORTv 

V 
\ 
\ 
\ 
\ 
\ 
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TEST CHAMBER 
W 
BALL VALVE 

Figure 1.  Design Concept for the Positive Step Pressure Calibrator 
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Figure 2.  Engineering Schematic of 150,000 psi Positive Step 
Pressure Calibrator 

Pressure (1) Pressure reservoir (10) 
(2) Connecting channel (11) 
(3) Test chamber (12) 
(4) Ball valve (13) 
(5) Valve seat (14) 
(6) Gage port (15) 
(7) Vacuum line port (16) 
(8) Test head ( 17) 
(9) Valve actuator 

Piston guide bushing 
Pin joints 
Trigger mechanism 
Hydraulic jack 
Limit/stop buffer 
Vacuum stem valve 
Port 
High pressure source 
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2.  DEVICE DESCRIPTION 

The device, illustrated in Figure 2 thru 4, consists of a large 
pressure reservoir (1) opening into a short wide channel (2) which 
terminates in a very small cylindrical test chamber (3).  Located in the 
test chamber (3) is a ball valve (4) which provides a high pressure seal at 
either of the valve seats (5) located at each end of the test chamber (3). 
Located in the side wall of the test chamber (3) are four gage ports (6) and 
one vacuum line port (7).  The channel (2), test chamber (3)/ gage ports (6) 
and vacuum line port (7) are contained in the test head (8), a monolithic 
assembly shown in lateral cross section in Figure 3.  The test head (8) is 
readily removed from the assembly, allowing changing of the gage ports (6) 
and the test chamber (3).  The ratio of the reservoir (1) volume to the test 
chamber (3) free volume is 197:1.  The channel (2) is kept short and wide to 
minimize retardation of fluid flow during the operation cycle.  The end 
closure of the test chamber (3) is formed by the ball valve actuator piston 
(9) and the piston guide bushing (10).  The piston is actuated by a quick 
release top-dead-center mechanism which consists of three pin joints (11), 
an air controlled trigger mechanism (12), a hydraulic jack (13) and a limit 
stop/buffer (14).  The system shown in Figure 2 is in the cocked position 
with the ball (4) pressed against the seat (5) that isolates the test 
chamber (3) from the reservoir (1).  The jack (13) is pressurized to provide 
sufficient force to seal the reservoir (1) from the test chamber (3).  The 
ratio of reservoir (1) pressure to jack (13) pressure is approximately 
100:1. 

A hollow stem valve (15) connected to a vacuum/drain line is located at 
port (7).  See Figure 3. 

Figure 3.  Lateral Cross-Sectional View of Test Head 
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A high pressure line (17), (Figure 2), is connected to port (16) at the 
upper end of the reservoir (1)•  This line connects the pressure generation 
system to the measurement system. 

Prior to operation, both the test chamber and reservoir are filled with 
fluid at ambient pressure.  During pressurization the reservoir is sealed 
off from the test chamber.  The actual movement of fluid through channel (2) 
is minimal, consisting of the volume required to displace the movement of 
actuator piston (9) in the test chamber ( 0.2 cc) and the amount due to 
compression of the fluid originally in the test chamber. 

Figure 4 shows the device after the trigger mechanism (12) is 
released.  The trigger (12) forces the middle pin joint of the top-dead- 
center mechanism against the limit stop/buffer (14), relaxes the force 
generated by the jack (13) and withdraws the ball valve actuator piston (9) 
into the piston guide bushing (10).  Differential pressure between the 
reservoir (1) and the test chamber (3) forces the valve ball (4) against the 
lower seat (5) on the piston guide bushing (9).  This action forms a new 
seal at the piston end of the test chamber (3) and allows fluid to flow from 
the reservoir (1) to the test chamber (3) causing the pressure in the 
chamber to rise to approximately 98% of the original reservoir pressure. 

\\\\\\^\ 

Figure  4.     Closeup View of  Test Chamber After  Trigger  Actuation 
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3. DEVICE OPERATION 

Starting with a drained system, the top-dead-center mechanism is placed 
in the release position as shown in Figure 4.  The high pressure line (17) 
is closed off and the vacuum valve (15) is opened.  Gages are mounted in the 
gage ports (6), the system is evacuated to a pressure of 2 Torr and the 
Vacuum valve (15) is closed.  A 50% solution of water and glycol with a rust 
inhibitor enters the system through the high pressure line (17).  Liquid is 
used rather than gas to minimize the level of stored energy.  When the 
system is filled and stabilized at atmospheric pressure, the top-dead-center 
mechanism is cocked as shown in Figure 2.  The hydraulic jack (13) is 
pressurized to approximately 1% of the desired reservoir pressure. 
Monitored by the static reference gage, the pressure generation system 
pressurizes the reservoir (1). Once the desired reservoir pressure has been 
established, the high pressure line (17) is closed off from the standard 
gage and the pressure generation system by a constant volume valve.  The 
device is now ready to be triggered. 

Activation of the top-dead-center mechanism shown in Figure 4 initiates 
the event and the recording system.  Pre-trigger delay features permit the 
recording of initial baseline pressures, the rising portion and final steady 
state values of the pressure-time curve.  One gage with exceptionally good 
response charcteristics and known history is used as an informal laboratory 
standard.  The output from this gage is monitored for at least 10 seconds 
after the trigger event to observe system behavior, particularly possible 
pressure losses from leakage.  Soon after the system is triggered, the 
constant volume valve to the static reference gage is reopened and the 
reservoir pressure measured.  Thus, the speed of the step can be measured 
using the timebase of the recording system and the magnitude of the dynamic 
response can be checked against the response of the static reference gage (a 
secondary standard). 

At the completion of the test, the top-dead-center mechanism is 
recocked, the test chamber (3) is drained through the vacuum valve (15), and 
the pressure is relaxed in the reservoir (1).  The gages can now be replaced 
for further testing. 

4. PROTOTYPE PERFORMANCE 

Examples of both short- and long-term responses of a commercial 
piezoelectric pressure gage to a positive-going pressure step are presented 
in Figures 5 thru 8.  Figure 5 shows a typical pressure versus time history 
for a 75,000 pounds per square inch pulse acquired over 10 seconds. 
Monitoring the test gage response for 10 seconds allows correlation to the 
steady state response of the static reference gage.  Figure 6 shows a 20 
millisecond window of the same 75,000 pounds per square inch pulse; Figures 
7 and 8 present progressively shorter windows.  Overlaying the traces 
indicates that the steady state value of the pressure step is rapidly 
achieved and held after initial oscillations have died out.  Similar 
oscillations have been reported in lower pressure devices by both Smith and 
Dykstra; one may conclude that these oscillations are caused by actions 
within the pressure generation system and the mount, not by the gage 
itself. 
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One important application of the step calibrator is comparing the 
responses of different types of pressure gages to the same input.  Figures 9 
and 10 show the pressure versus time histories of both a piezoelectric gage 
and a strain-type gage measuring a positive-going 100,000 pounds per square 
inch pressure step.  The traces are virtually identical, exhibiting initial 
system oscillations which quickly decay. 

100 

75 
CO 

O 

a 

50 

25 

-25 

GAGE  TYPE   P,   No   C2644 
13  APRIL  83 

SHOT   25 

CF   .1509   PCB/psi 

J 
16 20 0      4      8      12 

TIME (ms) 
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The calibrator may also be used to analyze the behavior of experimental 
gages by comparing their output with a known standard.  Figure 11 shows the 
pressure versus time history of a developmental pressure gage subjected to a 
125,000 pounds per square inch pressure pulse.  This curve exhibits, as 
expected, a smooth pressure rise and stable output after the peak pressure 
has been attained. 
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Figure 12.  Response of a Faulty Developmental Pressure Gage 
to a 130,000 psi Positive Pressure Step 
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The positive step calibration device in conjunction with conventional 
deadweight calibration methods can be useful in tracing dynamic gage 
response problems.  Figure 12 exhibits the pressure history of a 
developmental pressure gage exposed to a 130,000 psi pressure step.  The 
trace indicates a clear upward drift after the step is complete.  The same 
gage had exhibited good response behavior on static calibration using the 
deadweight system.  In gun tests, however, the device read five percent 
low.  From the dynamic calibration tests it became clear that it took tens 
of milliseconds for the gage output to reach a maximum.  This could not be 
detected by the static calibration technique.  In point of fact, on 
dissecting the gage it was found that the bond between the strain patch and 
the gage body was faulty. The defect of the type noted could well account 
for the differences in static vs dynamic behavior noted in testing. 

III.  CONCLUSIONS 

The positive-going step calibration device described allows the 
accurate, safe and simple dynamic calibration and evaluation of ballistic 
pressure gages. The gage response obtained can be related to its static 
deadweight behavior. Several gages may be evaluated simultaneously relative 
to a common dynamic event.  The calibrator may also be used as a diagnostic 
tool in analyzing and developing experimental pressure gages. 
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